Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2022-11-02T12:11:02Z
dc.date.available 2022-11-02T12:11:02Z
dc.date.issued 1970
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/144965
dc.description.abstract In the first part of this paper we discuss two cases in which the celebrated Poincaré’s theorem is not applicable, but it still holds. In the second part, the formal integral of the restricted problem of three bodies proposed by Contopoulos is discussed. We show that without violating Contopoulos’ rule his integral 00 [fórmula] may be reduced to [fórmula], if use is made of the integrals of the osculating problem. Moreover, we give a very simple example showing that the approximate integral to the second order in μ, obtained by applying Contopoulos’ rule, may be in error of order μ2. en
dc.language es es
dc.publisher Observatorio Astronómico de la Universidad Nacional de La Plata es
dc.subject Contopoulos’ rule es
dc.subject Poincaré’s theorem es
dc.title Exact and approximate integrals of some canonical systems en
dc.type Publicacion seriada es
sedici.title.subtitle Serie Astronómica - Tomo XXXVI es
sedici.creator.person Cesco, Reynaldo Pedro es
sedici.description.note Material digitalizado en SEDICI gracias a la Biblioteca de la Facultad de Ciencias Astronómicas y Geofísicas. es
sedici.subject.materias Ciencias Astronómicas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Observatorio Astronómico de La Plata es
sedici.subtype Publicacion seriada es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)