Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-11-18T14:35:05Z
dc.date.available 2022-11-18T14:35:05Z
dc.date.issued 2019-12-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/146096
dc.description.abstract Gas turbines (GTs) are thermal machines used to transform the energy released in combustion with a hydrocarbon into mechanical power, in order to drive a machine or generate thrust in aircraft. The critical issue in the GT design are the parts exposed to extreme mechanical and thermal conditions, e.g., the first row of turbine blades. The GT thermal efficiency is limited by the maximum temperature the blade materials can withstand without softening or creeping. Currently, the maximum operating temperature is above the softening point of the blade material thanks to techniques of ceramic coatings of low thermal conductivity, called Thermal Barrier Coating (TBC), and techniques of blade cooling. The internal cooling of blades involves conduits inside them for air that comes from a bleed in an intermediate compressor stage. The air bleeding is around 3 to 5% of the main GT flow. This air and the heat flow that it receives are not used to generate power, so it is necessary to optimize the cooling techniques in order to control the temperature using the least amount of air and minimum heat flux evacuated, for holding the GT overall efficiency high. The present work studies the internal cooling of Elemental Gas Turbine Blade (EGTB) with a fixed thickness of the TBC and the optimization of the conduit shape and position over a cross section in 2D. The optimization is carried out by exhaustive searching method based on the Constructal Theory. The optimization of the position, size, and aspect ratio of EGTBs was done for two types of standard elliptical conduits of different geometries, uniformly distributed. Two different objective functions are analyzed: minimum maximum temperature on the metal and maximum heat evacuation efficiency. The outcome of this work establishes that the use of elliptical conduits of aspect ratio 2:5 leads to improvement in the thermal performance of cooled blades. As compared with circular conduits of the same area, elliptical conduits allow transfer of a greater amount of heat; with a correct design, they enable a lower maximum temperature on the metal. Besides, the constructal designs obtained in this study for the minimum maximum relative temperature ˜ T max or maximum heat evacuation efficiency ξ were not identical. en
dc.format.extent 507-528 es
dc.language en es
dc.subject Gas turbine es
dc.subject Elliptical conduits es
dc.subject Thermal performance es
dc.subject Cooled blades es
dc.title Constructal Design of Elliptical Conduits for Cooling of Gas Turbine Blades with External Thermal Barrier Coating en
dc.type Articulo es
sedici.identifier.other doi:10.1134/s1810232819040064 es
sedici.identifier.issn 1810-2328 es
sedici.identifier.issn 1990-5432 es
sedici.creator.person Bosc, Cristian es
sedici.creator.person Lorenzini, G. es
sedici.creator.person Oliveira Rocha, L. A. es
sedici.creator.person Centeno, F. R. es
sedici.creator.person Gutiérrez, Fernando es
sedici.description.note Este trabajo tiene una enmienda (ver "Documentos relacionados"). es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Engineering Thermophysics es
sedici.relation.journalVolumeAndIssue vol. 28, no. 4 es
sedici.relation.isRelatedWith https://doi.org/10.1134/S1810232819040064 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)