Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-11-24T15:35:36Z
dc.date.available 2022-11-24T15:35:36Z
dc.date.issued 2014-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/146362
dc.description.abstract Complexity–entropy causality plane (CECP) is a diagnostic diagram plotting normalized Shannon entropy HS versus Jensen–Shannon complexity CJS that has been introduced in nonlinear dynamics analysis to classify signals according to their degrees of randomness and complexity. In this study, we explore the applicability of CECP in hydrological studies by analyzing 80 daily stream flow time series recorded in the continental United States during a period of 75 years, surrogate sequences simulated by autoregressive models (with independent or long-range memory innovations), Theiler amplitude adjusted Fourier transform and Theiler phase randomization, and a set of signals drawn from nonlinear dynamic systems. The effect of seasonality, and the relationships between the CECP quantifiers and several physical and statistical properties of the observed time series are also studied. The results point out that: (1) the CECP can discriminate chaotic and stochastic signals in presence of moderate observational noise; (2) the signal classification depends on the sampling frequency and aggregation time scales; (3) both chaotic and stochastic systems can be compatible with the daily stream flow dynamics, when the focus is on the information content, thus setting these results in the context of the debate on observational equivalence; (4) the empirical relationships between HS and CJS and Hurst parameter H, base flow index, basin drainage area and stream flow quantiles highlight that the CECP quantifiers can be considered as proxies of the long-term low-frequency groundwater processes rather than proxies of the short-term high-frequency surface processes; (6) the joint application of linear and nonlinear diagnostics allows for a more comprehensive characterization of the stream flow time series. en
dc.format.extent 1685-1708 es
dc.language en es
dc.subject Stream flow es
dc.subject Complexity–entropy causality plane es
dc.subject Permutation entropy es
dc.subject Permutation statistical complexity es
dc.subject Bandt and Pompe method es
dc.subject Hurst parameter es
dc.title Complexity–entropy analysis of daily stream flow time series in the continental United States en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00477-013-0825-8 es
sedici.identifier.issn 1436-3240 es
sedici.identifier.issn 1436-3259 es
sedici.creator.person Serinaldi, Francesco es
sedici.creator.person Zunino, Luciano José es
sedici.creator.person Rosso, Osvaldo Aníbal es
sedici.subject.materias Física es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigaciones Ópticas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Stochastic Environmental Research and Risk Assessment es
sedici.relation.journalVolumeAndIssue vol. 28, no. 7 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)