Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-11-24T16:54:06Z
dc.date.available 2022-11-24T16:54:06Z
dc.date.issued 1991
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/146376
dc.description.abstract Relevant aspects of the critical behavior of the site percolation model in a L×M geometry (L≪M) are studied. It is shown that this geometry favors the growth of percolating clusters in the L-direction with respect to those growing in the M-direction, causing pronounced finite-size effects on the percolation probabilities. Scaling functions have an additional parameter, namely M, which introduces a dependence of these functions on the aspect ratio L/M. At criticality, the probability of a site belonging to the percolation clusters (PL,M) behaves like PL,M∝Lβ/vφ(L/M) with β=5/36 and v=4/3, where φ is a suitable scaling function. Using scaling arguments it is conjectured and then tested by means of Monte Carlo simulations, the following asymptotic behavior φ(L/M)∝(L/M)δ, (L→∞,M→∞, δ=1), for the leading term. Systematic deviations of the Monte Carlo data from the conjectured behavior are due to second order corrections to the leading term which can also be under-stood on the basis of scaling ideas. Finite-size dependent “critical probabilities” are also functions of L/M as it follows from scaling arguments which are corroborated by the simulations. en
dc.format.extent 129-134 es
dc.language en es
dc.subject Spectroscopy es
dc.subject Neural Network es
dc.subject Complex System es
dc.subject Monte Carlo Simulation es
dc.subject Asymptotic Behavior es
dc.title Critical behavior of the site percolation model on the square lattice in a L×M geometry en
dc.type Articulo es
sedici.identifier.other doi:10.1007/bf01313995 es
sedici.identifier.issn 0722-3277 es
sedici.identifier.issn 1434-6036 es
sedici.identifier.issn 1434-6028 es
sedici.creator.person Monetti, Roberto Adrián es
sedici.creator.person Albano, Ezequiel Vicente es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Zeitschrift für Physik B Condensed Matter es
sedici.relation.journalVolumeAndIssue vol. 82, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)