Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-03-01T14:58:32Z
dc.date.available 2023-03-01T14:58:32Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/149428
dc.description.abstract La sociedad hoy plantea crecientes demandas de soluciones informáticas, cuando estas soluciones requieren el procesamiento de grandes volúmenes de datos, las herramientas tradicionales de procesamiento muestran limitaciones e inconvenientes derivados de la cantidad de datos a procesar o del tiempo necesario para realizarlo. Surge así, la necesidad de herramientas específicas, llamadas herramientas de Big Data. Dentro de estas existe un grupo concreto para el procesamiento de flujos de datos (stream processing), entendiendo por flujo de datos la recepción y procesamiento continuo de datos ilimitados desde diferentes fuentes. Debido a su naturaleza sin límite, estos flujos no pueden descargarse de manera completa, y deben ser procesados en línea a cuando se reciben. Dos de las principales herramientas para el procesamiento de flujos de datos son Apache Spark y Apache Flink, estas herramientas serán el objeto de estudio del presente trabajo. El caso de estudio a desarrollar tiene por finalidad comparar distintos aspectos de ambas herramientas. Como caso de estudio se propone obtener publicaciones que incluyan las expresiones coronavirus y/o covid (SARSCoV- 2), y agrupar las mismas de acuerdo a su geolocalización, ya que esto permitirá monitorear la evolución de la enfermedad de acuerdo a la localización de los usuarios y su participación en distintos lugares de la web (redes sociales, comentarios en publicaciones, etc.). es
dc.format.extent 638-642 es
dc.language es es
dc.subject data streaming es
dc.subject Stream processing es
dc.subject Apache Spark es
dc.subject Apache Flink es
dc.subject coronavirus es
dc.subject Covid19 es
dc.title Procesamiento de flujo de datos es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-1364-31-2 es
sedici.title.subtitle Un caso de estudio: análisis en tiempo real usando datos geolocalizados es
sedici.creator.person Fajardo, Hugo Manuel es
sedici.creator.person Hasperué, Waldo es
sedici.description.note XIII Workshop procesamiento de señales y sistemas de tiempo real (WPSSTR) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-10
sedici.relation.event XXVIII Congreso Argentino de Ciencias de la Computación (CACIC) (La Rioja, 3 al 6 de octubre de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/149102 es
sedici.relation.bookTitle Libro de actas - XXVIII Congreso Argentino de Ciencias de la Computación - CACIC 2022 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)