Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-03-14T14:41:53Z
dc.date.available 2023-03-14T14:41:53Z
dc.date.issued 2000
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/150086
dc.description.abstract A biased Newton direction is introduced for minimizing quasiconver functions with bounded level sets. It is a generalization of the usual Newton’s direction for strictly convex quadratic functions. This new direction can be derived from the intersection of approzimating hyperplanes to the epigraph at points on the boundary of the same level set. Based on that direction, an unconstrained minimization algorithm is presented. It is proved to have global and local-quadratic convergence under standard hypotheses. These theoretical results may lead to different methods based on computing search directions using only first order information at points on the level sets. Most of all if the computational cost can be reduced by relaxing some of the conditions according for instance to the results presented in the Appendix. Some tests are presented to show the qualitative behavior of the new direction and with the purpose to stimulate further research on these kind of algorithms. en
dc.format.extent 135-166 es
dc.language en es
dc.subject Quasiconvex functions es
dc.subject Level sets es
dc.subject Discretization methods es
dc.title Cutting planes and a biased Newton direction for minimizing quasiconvex functions en
dc.type Articulo es
sedici.identifier.issn 1014-8264 es
sedici.creator.person Echebest, Nélida Ester es
sedici.creator.person Guardarucci, María Teresa es
sedici.creator.person Scolnik, Hugo Daniel es
sedici.creator.person Vacchino, María Cristina es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Investigación Operativa es
sedici.relation.journalVolumeAndIssue vol. 9, no. 1-3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)