Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-04-18T14:47:55Z
dc.date.available 2023-04-18T14:47:55Z
dc.date.issued 2022
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/151630
dc.description.abstract Mutation testing seeds faults using a predefined set of simple syntactic transformations, aka mutation operators, that are (typically) defined based on the grammar of the targeted programming language. As a result, mutation operators often alter the program semantics in ways that often lead to unnatural code (unnatural in the sense that the mutated code is unlikely to be produced by a competent programmer). Such unnatural faults may not be convincing for developers as they might perceive them as unrealistic/uninteresting, thereby hindering the usability of the method. Additionally, the use of unnatural mutants may have actual impact on the guidance and assessment capabilities of mutation testing. This is because unnatural mutants often lead to exceptions, or segmentation faults, infinite loops and other trivial cases. To deal with this issue, we propose forming mutants that are in some sense natural; meaning that the mutated code/statement follows the implicit rules, coding conventions and generally representativeness of the code produced by competent programmers. We define/capture this naturalness of mutants using language models trained on big code that learn (quantify) the occurrence of code tokens given their surrounding code. We introduce µBert, a mutation testing tool that uses a pre-trained language model (CodeBERT) to generate mutants. This is done by masking a token from the expression given as input and using CodeBERT to predict it. en
dc.format.extent 64-64 es
dc.language en es
dc.subject Mutation testing es
dc.subject Faults es
dc.title µBert: mutation testing using pre-trained language models en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/278/259 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Degiovanni, Renzo es
sedici.creator.person Papadakis, Mike es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-10
sedici.relation.event Simposio Argentino de Ingeniería de Software (ASSE 2022) - JAIIO 51 (Modalidad virtual y presencial (UAI), octubre 2022) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)