Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-05-05T17:23:12Z
dc.date.available 2023-05-05T17:23:12Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/152530
dc.description.abstract Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of the equipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labels are wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out. en
dc.language en es
dc.subject Predictive maintenance es
dc.subject Prognosis es
dc.subject Machine learning es
dc.subject K-means es
dc.subject Clustering es
dc.subject SCADA data es
dc.subject Renewable energies es
dc.subject Wind turbine es
dc.title Exploratory analysis of SCADA data fromwind turbines using the K-means clustering algorithm for predictive maintenance purposes en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.3390/machines11020270 es
sedici.identifier.issn 2075-1702 es
sedici.creator.person Cosa Rodriguez, Pablo es
sedici.creator.person Marti Puig, Pere es
sedici.creator.person Caiafa, Cesar Federico es
sedici.creator.person Serra Serra, Moisès es
sedici.creator.person Cusidó, Jordi es
sedici.creator.person Solé Casals, Jordi es
sedici.subject.materias Ingeniería es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Instituto Argentino de Radioastronomía es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Machines es
sedici.relation.journalVolumeAndIssue vol. 11, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)