Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-05-10T17:16:15Z
dc.date.available 2023-05-10T17:16:15Z
dc.date.issued 2010
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/152736
dc.description.abstract Multicore processors have opened new paths for improving the parallel performance in cluster environments. Nevertheless, the selection of different combinations between the amount of nodes and the number of cores per node implies different results in terms of parallel performance. We performed an impact assessment on the parallel performance of node-core combinations using a parallel approach of a machine learning ensemble algorithm. Our results reveal that two key factors for selecting a suitable node-core combination: the network capabilities and the workload distribution. We observed that the network interconnection limits the amount of nodes that can be efficiently used, due to the extranode communications does not allow to keep scaling as the number of nodes is increased. The best results were obtained by reaching a balance between intra-node and extra-node communications. By the other hand, the parallel performance can be negatively affected when the workload distribution is not homogeneous among nodes. en
dc.format.extent 3363-3378 es
dc.language en es
dc.subject Parallel Algorithms es
dc.subject Parallelism and Data Sharing on Multicore Architectures es
dc.subject Ensemble Learning es
dc.subject Local Negative Correlation es
dc.title Impact Assessment on the Parallel Performance of Node-Core Combinations in a Multicore Cluster Environment: A Case of Study en
dc.type Objeto de conferencia es
sedici.identifier.uri http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-17.pdf es
sedici.identifier.issn 1851-9326 es
sedici.creator.person Fernández, César es
sedici.creator.person Saravia, Francisco es
sedici.creator.person Valle, Carlos es
sedici.creator.person Allende, Héctor es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2010
sedici.relation.event High-Performance Computing Symposium (HPC 2010) - JAIIO 39 (UADE, 30 de agosto al 3 de septiembre de 2010) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)