Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-06-27T18:43:46Z
dc.date.available 2023-06-27T18:43:46Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/154732
dc.description.abstract To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered. en
dc.format.extent 986-999 es
dc.language en es
dc.subject Neuronal model es
dc.subject Path integrals es
dc.subject Stochastic processes es
dc.subject Spiking output es
dc.subject Neural coding es
dc.title A path integral approach to the Hodgkin–Huxley model en
dc.type Articulo es
sedici.identifier.other http://dx.doi.org/10.1016/j.physa.2017.06.016 es
sedici.identifier.issn 0378-4371 es
sedici.creator.person Baravalle, Román es
sedici.creator.person Rosso, Osvaldo Aníbal es
sedici.creator.person Montani, Fernando Fabián es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física de Líquidos y Sistemas Biológicos es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physica A es
sedici.relation.journalVolumeAndIssue vol. 486 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)