Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-08-07T15:39:31Z
dc.date.available 2023-08-07T15:39:31Z
dc.date.issued 2022-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/155993
dc.description.abstract Synaptic plasticity is characterized by remodeling of existing synapses caused by strengthening and/or weakening of connections. This is represented by long-term potentiation (LTP) and long-term depression (LTD). The occurrence of a presynaptic spike (or action potential) followed by a temporally nearby postsynaptic spike induces LTP; conversely, if the postsynaptic spike precedes the presynaptic spike, it induces LTD. This form of synaptic plasticity induction depends on the order and timing of the pre- and postsynaptic action potential, and has been termed spike time-dependent plasticity (STDP). After an epileptic seizure, LTD plays an important role as a depressor of synapses, which may lead to their complete disappearance together with that of their neighboring connections until days after the event. Added to the fact that after an epileptic seizure the network seeks to regulate the excess activity through two key mechanisms: depressed connections and neuronal death (eliminating excitatory neurons from the network), LTD becomes of great interest in our study. To investigate this phenomenon, we develop a biologically plausible model that privileges LTD at the triplet level while maintaining the pairwise structure in the STPD and study how network dynamics are affected as neuronal damage increases. We find that the statistical complexity is significantly higher for the network where LTD presented both types of interactions. While in the case where the STPD is defined with purely pairwise interactions an increase is observed as damage becomes higher for both Shannon Entropy and Fisher information. en
dc.language en es
dc.subject information theory es
dc.subject Band and Pompe es
dc.subject plasticity es
dc.subject STDP es
dc.subject triplets es
dc.subject deep learning es
dc.title Spike Timing-Dependent Plasticity with Enhanced Long-Term Depression Leads to an Increase of Statistical Complexity en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.3390/e24101384 es
sedici.identifier.issn 1099-4300 es
sedici.creator.person Pallares Di Nunzio, Monserrat es
sedici.creator.person Montani, Fernando Fabián es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Entropy es
sedici.relation.journalVolumeAndIssue vol. 24, no. 10 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)