Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-08-23T17:43:35Z
dc.date.available 2023-08-23T17:43:35Z
dc.date.issued 2023-05
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/156747
dc.description.abstract Un Transformer es un modelo de Aprendizaje Profundo creado en 2017 con el objetivo de realizar traducciones entre lenguajes naturales. Las innovaciones que introdujo, particularmente la de auto-atención, han permitido construir prototipos que tienen una noción intuitiva del contexto, y comprenden el significado y los patrones subyacentes del lenguaje. En 2020 OpenAI hizo público GPT-3, un modelo preentrenado enfocado hacia la generación de lenguaje, que mostró resultados prometedores, creando textos con una calidad tal que se hace difícil distinguir si fueron escritos por un humano o por una máquina. Podemos afirmar que el código fuente es texto generado en un lenguaje formal, y por lo tanto podría ser generado con herramientas basadas en estos prototipos. Este trabajo presenta un estudio de la evolución y el estado del arte en este campo: la generación automática de código fuente a partir de especificaciones escritas en lenguaje natural. Recorremos diferentes casos, su éxito, las dificultades de encontrar mecanismos de evaluación y su posible implementación en un futuro por las empresas. es
dc.description.abstract A Transformer is a Deep Learning model created in 2017 with the aim of performing translations between natural languages. The innovations introduced, particularly the self-attention mechanism, made it possible to build prototypes that have an intuitive notion of context and understanding of the meaning and underlying patterns of the language. In 2020 OpenAI released GPT-3, a pretrained model focused on language generation, which showed promising results, creating text with a quality that made it difficult to distinguish whether they were written by a human or by a machine. As the source code is text generated in a formal language, it could be generated with tools based on these prototypes. This work presents a study of the evolution and the state of the art in this field: the automatic generation of source code from specifications written in a natural language. We navigate through different cases, their success, the difficulties of finding test mechanisms and their possible implementation in the future by companies. en
dc.format.extent 19-36 es
dc.language es es
dc.subject Generación de código es
dc.subject Transformers es
dc.subject Modelos preentrenados es
dc.subject Automatización es
dc.title Generación automática de código fuente a través de modelos preentrenados de lenguaje es
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/465 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Bender, Adrián es
sedici.creator.person Nicolet, Santiago es
sedici.creator.person Folino, Pablo es
sedici.creator.person Lopez, Juan José es
sedici.creator.person Hansen, Gustavo es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
sedici.relation.event 51 Jornadas Argentinas de Informática e Investigación Operativa - JAIIO (Buenos Aires, 17 al 27 de octubre de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 22, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)