Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-08-29T15:28:53Z
dc.date.available 2023-08-29T15:28:53Z
dc.date.issued 2023-05
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/157006
dc.description.abstract In recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas. en
dc.format.extent 2-18 es
dc.language es es
dc.subject incendios forestales es
dc.subject medio ambiente es
dc.subject datos abiertos es
dc.subject machine learning es
dc.subject remote sensing es
dc.title A data pipeline for forest fire prediction in Pinamar en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/464 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Martinez Saucedo, Ana es
sedici.creator.person Inchausti, Pablo Ezequiel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
sedici.relation.event 51 Jornadas Argentinas de Informática e Investigación Operativa - JAIIO (Buenos Aires, 17 al 27 de octubre de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 22, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)