Busque entre los 166285 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2023-11-10T12:56:21Z | |
dc.date.available | 2023-11-10T12:56:21Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/160008 | |
dc.description.abstract | Galaxy rotation curve (RC) fitting is an important technique which allows the placement of constraints on different kinds of dark matter (DM) halo models. In the case of non-phenomenological DM profiles with no analytic expressions, the art of finding RC best-fits including the full baryonic + DM free parameters can be difficult and time-consuming. In the present work, we use a gradient descent method used in the backpropagation process of training a neural network, to fit the so-called Grand Rotation Curve of the Milky Way (MW) ranging from ∼1 pc all the way to ∼10⁵ pc. We model the mass distribution of our Galaxy including a bulge (inner + main), a disk, and a fermionic dark matter (DM) halo known as the Ruffini-Argüelles-Rueda (RAR) model. This is a semi-analytical model built from first-principle physics such as (quantum) statistical mechanics and thermodynamics, whose more general density profile has a dense core–diluted halo morphology with no analytic expression. As shown recently and further verified here, the dark and compact fermion-core can work as an alternative to the central black hole in SgrA* when including data at milliparsec scales from the S-cluster stars. Thus, we show the ability of this state-of-the-art machine learning tool in providing the best-fit parameters to the overall MW RC in the 10⁻² –10⁵ pc range, in a few hours of CPU time. | en |
dc.language | en | es |
dc.subject | dark matter | es |
dc.subject | Milky Way | es |
dc.subject | rotation curves | es |
dc.subject | numerical methods | es |
dc.title | Galaxy rotation curve fitting using machine learning tools | en |
dc.type | Articulo | es |
sedici.identifier.other | https://doi.org/10.3390/universe9080372 | es |
sedici.identifier.issn | 2218-1997 | es |
sedici.creator.person | Argüelles, Carlos Raúl | es |
sedici.creator.person | Collazo, Santiago | es |
sedici.subject.materias | Ciencias Astronómicas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Astrofísica de La Plata | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Universe | es |
sedici.relation.journalVolumeAndIssue | vol. 9, no. 8 | es |