Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-10T12:56:21Z
dc.date.available 2023-11-10T12:56:21Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160008
dc.description.abstract Galaxy rotation curve (RC) fitting is an important technique which allows the placement of constraints on different kinds of dark matter (DM) halo models. In the case of non-phenomenological DM profiles with no analytic expressions, the art of finding RC best-fits including the full baryonic + DM free parameters can be difficult and time-consuming. In the present work, we use a gradient descent method used in the backpropagation process of training a neural network, to fit the so-called Grand Rotation Curve of the Milky Way (MW) ranging from ∼1 pc all the way to ∼10⁵ pc. We model the mass distribution of our Galaxy including a bulge (inner + main), a disk, and a fermionic dark matter (DM) halo known as the Ruffini-Argüelles-Rueda (RAR) model. This is a semi-analytical model built from first-principle physics such as (quantum) statistical mechanics and thermodynamics, whose more general density profile has a dense core–diluted halo morphology with no analytic expression. As shown recently and further verified here, the dark and compact fermion-core can work as an alternative to the central black hole in SgrA* when including data at milliparsec scales from the S-cluster stars. Thus, we show the ability of this state-of-the-art machine learning tool in providing the best-fit parameters to the overall MW RC in the 10⁻² –10⁵ pc range, in a few hours of CPU time. en
dc.language en es
dc.subject dark matter es
dc.subject Milky Way es
dc.subject rotation curves es
dc.subject numerical methods es
dc.title Galaxy rotation curve fitting using machine learning tools en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.3390/universe9080372 es
sedici.identifier.issn 2218-1997 es
sedici.creator.person Argüelles, Carlos Raúl es
sedici.creator.person Collazo, Santiago es
sedici.subject.materias Ciencias Astronómicas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Astrofísica de La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Universe es
sedici.relation.journalVolumeAndIssue vol. 9, no. 8 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)