Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-14T12:13:38Z
dc.date.available 2023-11-14T12:13:38Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160108
dc.description.abstract The performance of diagnostic Computer-Aided Design (CAD) systems for retinal diseases depends on the quality of the retinal images being screened. Thus, many studies have been developed to evaluate and assess the quality of such retinal images. However, most of them did not investigate the relationship between the accuracy of the developed models and the quality of the visualization of interpretability methods for distinguishing between gradable and non-gradable retinal images. Consequently, this paper presents a novel framework called ‘‘FGR-Net’’ to automatically assess and interpret underlying fundus image quality by merging an autoencoder network with a classifier network. The FGR-Net model also provides an interpretable quality assessment through visualizations. In particular, FGR-Net uses a deep autoencoder to reconstruct the input image in order to extract the visual characteristics of the input fundus images based on self-supervised learning. The extracted features by the autoencoder are then fed into a deep classifier network to distinguish between gradable and ungradable fundus images. FGR-Net is evaluated with different interpretability methods, which indicates that the autoencoder is a key factor in forcing the classifier to focus on the relevant structures of the fundus images, such as the fovea, optic disk, and prominent blood vessels. Additionally, the interpretability methods can provide visual feedback for ophthalmologists to understand how our model evaluates the quality of fundus images. The experimental results showed the superiority of FGR-Net over the state-of-the-art quality assessment methods, with an accuracy of > 89% and an F1-score of > 87%. The code is publicly available at https://github.com/saifalkh/FGR-Net. en
dc.language en es
dc.subject Retinal image es
dc.subject Quality assessment es
dc.subject Autoencoder network es
dc.subject Ocular diseases es
dc.subject Deep learning es
dc.subject Intepretability es
dc.subject Explainability es
dc.subject Gradability es
dc.title FGR-Net: interpretable fundus image gradeability classification based on deep reconstruction learning en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1016/j.eswa.2023.121644 es
sedici.identifier.issn 0957-4174 es
sedici.creator.person Khalid, Saif es
sedici.creator.person Rashwan, Hatem A. es
sedici.creator.person Abdulwahab, Saddam es
sedici.creator.person Abdel-Nasser, Mohamed es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.creator.person Puig, Domenec es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Expert Systems With Applications es
sedici.relation.journalVolumeAndIssue vol. 238 es


Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)