Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-16T12:33:22Z
dc.date.available 2023-11-16T12:33:22Z
dc.date.issued 2023-06-22
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160240
dc.description.abstract Early detection of diseases and pests is a key factor in eradicating or minimising the damage that these may cause. In this work, a comprehensive solution is presented that is based on the composition of existing cloud solutions and mobile tools to detect in-situ issues. The platform presented was used for the detection of powdery mildew and Cladosporium diseases in tomatoes. The results of using the approach to carry out this task were more than satisfactory since it managed to correctly detect the symptoms, having mAP of 0.41 in at least some of these symptoms. We analysed the performance of our dataset, on the one hand, and the combination of PlantDoc dataset, on the other hand. This shows that the platform can be used in the agriculture sector, as an additional tool for detecting diseases and pests in order to combat the problem and reduce its consequences. en
dc.language en es
dc.subject Agriculture es
dc.subject Cloud es
dc.subject Machine-learning es
dc.subject Mobile es
dc.subject tomato es
dc.subject powder mould es
dc.subject cladosporium es
dc.title A scalable offline AI-based solution to assist the diseases and plague detection in agriculture en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1080/12460125.2023.2226381 es
sedici.identifier.issn 2116-7052 es
sedici.creator.person Urbieta, Mario Matías es
sedici.creator.person Urbieta, Martín es
sedici.creator.person Pereyra, Mauro Ezequiel es
sedici.creator.person Laborde, Tomás es
sedici.creator.person Villarreal, Guillermo es
sedici.creator.person Pino, Mariana del es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Laboratorio de Investigación y Formación en Informática Avanzada es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Decision Systems es
sedici.relation.journalVolumeAndIssue 2023 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)