Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-16T12:38:22Z
dc.date.available 2023-11-16T12:38:22Z
dc.date.issued 2023-09-06
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160243
dc.description.abstract Over the last few decades, building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. As a consequence, there is alarge amount of information in millions of assets that are hard to process because of their analog nature. Since adopting the Building Information Model (BIM) approach, any new building plan can be subject to sophisticated validations and analysis. However, legacy analog plans cannot profit from sophisticated BIM analysis, and it is not feasible to manually generate BIM representations at low cost. There is a demand for BIM models of existing buildings that are feasible to be integrated into a workflow for building energy retrofitting. This paper presents a novel approach to generating BIM Models based on artificial intelligence algorithms by parsing architectural and structural drawings. To identify elements from blueprints and generate the model, we first trained the Mask R-CNN framework with our dataset of 9 concrete buildings composed of architectural and structural blueprints. The outcome of the process is a BIM model corresponding to one of the multi-storey buildings using the Industry Foundation Classes (IFC) format. Building development has been recorded using hand-made blueprints before CAD tools appeared and later with digital building plans. en
dc.language en es
dc.subject BIM es
dc.subject Machine-Learning es
dc.subject Blueprints es
dc.subject Floor plans es
dc.subject As-build es
dc.subject Building es
dc.subject Model generation es
dc.subject IFC es
dc.subject 2D drawing es
dc.subject Architectural plans es
dc.subject Structural Plans es
dc.title Generating BIM model from structural and architectural plans using Artificial Intelligence en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1016/j.jobe.2023.107672 es
sedici.identifier.issn 2352-7102 es
sedici.creator.person Urbieta, Martín es
sedici.creator.person Urbieta, Mario Matías es
sedici.creator.person Laborde, Tomás es
sedici.creator.person Villarreal, Guillermo es
sedici.creator.person Rossi, Gustavo Héctor es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Laboratorio de Investigación y Formación en Informática Avanzada es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Building Engineering es
sedici.relation.journalVolumeAndIssue vol. 78, art. 107672 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)