Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-16T17:56:08Z
dc.date.available 2023-11-16T17:56:08Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160256
dc.description.abstract This paper explores the use of clustering models of stocks to improve both (a) the prediction of stock prices and (b) the returns of trading algorithms. We cluster stocks using k-means and several alternative distance metrics, using as features quarterly financial ratios, prices and daily returns. Then, for each cluster, we train ARIMA and LSTM forecasting models to predict the daily price of each stock in the cluster. Finally, we employ the clustering-empowered forecasting models to analyze the returns of different trading algorithms. We obtain three key results: (i) LSTM models outperform ARIMA and benchmark models, obtaining positive investment returns in several scenarios; (ii) forecasting is improved by using the additional information provided by the clustering methods, therefore selecting relevant data is an important preprocessing task in the forecasting process; (iii) using information from the whole sample of stocks deteriorates the forecasting ability of LSTM models. These results have been validated using data of 240 companies of the Russell 3000 index spanning 2017 to 2022, training and testing with different subperiods. en
dc.language en es
dc.subject Stock price forecast es
dc.subject Clustering es
dc.subject Financial Reports es
dc.subject Deep learning es
dc.subject Investment algorithms es
dc.subject Trading es
dc.title Data vs. information: using clustering techniques to enhance stock returns forecasting en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1016/j.irfa.2023.102657 es
sedici.identifier.issn 1057-5219 es
sedici.creator.person Vásquez Sáenz, Javier es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.creator.person Fernández Bariviera, Aurelio es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle International Review of Financial Analysis es
sedici.relation.journalVolumeAndIssue vol. 88 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)