Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-04-15T13:27:41Z
dc.date.available 2024-04-15T13:27:41Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/164807
dc.description.abstract The analysis of epigenetic information for the diagnosis and prognosis of patients has been gaining relevance in recent years due to the technological progress that entails a decrease in information extraction and processing costs. One of the tasks most commonly carried out in this area is obtaining models that allow using patient epigenetic information to make inferences about survival analysis. As a result, optimizing these models turns into a problem of great interest today. In this article, the evaluation of different metrics and execution times for the Survival Support Vector Machines model is carried out through survival analysis applied to gene expression databases. Different experiments were performed varying the number of genes used for training to measure the correlation between model performance and data growth. The results showed that linear and polynomial kernels offer a better balance between execution time and model predictive power when the number of genes to be evaluated is less than 2000, while the cosine and RBF kernels are better candidates otherwise. en
dc.format.extent 97-105 es
dc.language es es
dc.subject Survival analysis es
dc.subject Survival Support Vector Machines es
dc.subject Regression, Performance es
dc.subject Apache Spark es
dc.title Performance analysis of the Survival-SVM classifier applied to gene-expression databases en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-9285-51-0 es
sedici.creator.person Camele, Genaro es
sedici.creator.person Hasperué, Waldo es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-10
sedici.relation.event XXIX Congreso Argentino de Ciencias de la Computación (CACIC) (Luján, 9 al 12 de octubre de 2023) es
sedici.description.peerReview peer-review es
sedici.workflowEdited true es
sedici.relation.isRelatedWith https://sedici.unlp.edu.ar/handle/10915/163107 es
sedici.relation.bookTitle Libro de actas - XXIX Congreso Argentino de Ciencias de la Computación - CACIC 2023 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)