Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-04-29T16:56:53Z
dc.date.available 2024-04-29T16:56:53Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/165462
dc.description.abstract Crop yield prediction plays a central role in the agricultural planning and decision-making processes. In this paper, we analyze the phenology as a crucial aspect of this topic. We propose a simple model to predict phenology groups on maize and wheat crops at the field-level in Argentina. Our model uses logistic regression and includes photoperiod as an explanatory variable, which is very simple to calculate taking into account latitude and date as input. A large number of data records are used to obtain accurate results. Our model has been tested with over 77% accuracy for both crops. It was also benchmarked with Random Forest, which gives comparable results. However, our study shows that a very simple approach could be used with logistic regression, with very little loss of performance. Our model obtains phenology groups and also performs well with certain critical phenology stages for both crops. Our study aims to provide a simple and effective method for predicting phenology, which can be an aid to crop prediction and for farmers to make accurate decisions. Our work emphasizes the simplicity of the model, the use of a large number of data records, and the inclusion of the photoperiod as an input variable. en
dc.format.extent 111-124 es
dc.language en es
dc.subject phenology prediction es
dc.subject logistic regression es
dc.subject photoperiod es
dc.title Predicting crop phenology: a simple logistic regression model approach en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/713 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Leale, Guillermo es
sedici.creator.person Cocitto, Bruno es
sedici.creator.person Cardoso, Ana Laura es
sedici.creator.person Lafluf, Pedro es
sedici.creator.person Tantucci, Ligia es
sedici.creator.person Mendez, Fernanda es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Congreso Argentino de AgroInformática (CAI 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)