Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-05-08T13:22:32Z
dc.date.available 2024-05-08T13:22:32Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/165745
dc.description.abstract The homophily phenomenon in social networks causes users to interact primarily with others who share their interests and cultural backgrounds, leading to the formation of "echo chambers" [1–3]. The notion of cultural diversity among users and communities becomes relevant in this context. While previous studies have investigated diversity in interaction graphs, to the best of our knowledge, none have explored the degree of diversity based on community embedding, which has been proven effective in measuring the positioning of communities in various social dimensions [4–7]. Building on the work of [7], we propose characterizing and measuring diversity through an innovative algorithm based on community embedding. We propose a novel algorithm based on community embedding to characterize and measure diversity. Our approach builds upon prior work on diversity in social media and involves iteratively updating values for the diversity of communities and individual users. To demonstrate the effectiveness of our algorithm, we conduct a case study analyzing over over 800 million posts in 9 million discussion subreddits of different ethnic groups on Reddit. Next, we generated embeddings for each community using community2vec [8] and developed algorithms to quantify cultural diversity based on these embeddings. en
dc.format.extent 66-67 es
dc.language en es
dc.subject Machine learning es
dc.subject Social Media es
dc.subject Reddit es
dc.subject Community Embedding es
dc.subject Diversity es
dc.title Quantifying cultural diversity in social networks: a community embedding approach en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/490 es
sedici.identifier.issn 2451-7496 es
sedici.title.subtitle Defining diversity measures through graph and machine learning techniques en
sedici.creator.person Oppenheim, Abi es
sedici.creator.person Albanese, Federico es
sedici.creator.person Feuerstein, Esteban es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)