Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-05-08T16:27:41Z
dc.date.available 2024-05-08T16:27:41Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/165778
dc.description.abstract In an age where information is more accessible than ever, it’s easy to assume that people are becoming more informed and open-minded. In spite of that, people are increasingly finding themselves in echo chambers, surrounded by like-minded individuals and exposed mainly to content that reinforces their existing beliefs. There are, however, social media users that break with that pattern by changing the group of users they interact with over time. In this study, we analyze the dynamics of interactions between users on Twitter and Reddit over extended periods, with the aim of identifying changes in community structures. We leverage the data available through these platforms’ APIs to construct user interaction graphs and use several methods to classify users into communities, including SBM, Infomap and Louvain, to classify users into communities. Additionally, we use NLP techniques such as Community Pooling, BERTopic and Perspective [8], as well as graph algorithms, to characterize different user profiles in online debates. Our research analyzes how social media communities and their users evolve over time, with implications for understanding online discourse and facilitating healthy interactions on these platforms. As a first approach, we analyzed three months of Donald Trump’s tweets, finding clear signs of polarization. Regarding the user flow between communities, we found that most of the users who changed communities twice went back to their original one (∼ 96%). en
dc.format.extent 45-48 es
dc.language en es
dc.subject social media es
dc.subject interactions es
dc.title Characterizing community structures on social media over time: a graph learning approach en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/754 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Zolezzi, María Victoria es
sedici.creator.person Albanese, Federico es
sedici.creator.person Feuerstein, Esteban es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)