Busque entre los 171119 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2024-05-10T18:38:37Z | |
dc.date.available | 2024-05-10T18:38:37Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/165927 | |
dc.description.abstract | To become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan. | en |
dc.format.extent | 37-50 | es |
dc.language | en | es |
dc.subject | Safe-RL | es |
dc.subject | State of Charge | es |
dc.subject | Battery aging | es |
dc.subject | Variability | es |
dc.title | Electric vehicle battery charging with safe-RL | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/622 | es |
sedici.identifier.issn | 2451-7496 | es |
sedici.creator.person | Trimboli, Maximiliano | es |
sedici.creator.person | Avila, Luis | es |
sedici.creator.person | Antonelli, Nicolás | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2023-09 | |
sedici.relation.event | Simposio Argentino de Inteligencia Artificial (ASAI 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) | es |
sedici.description.peerReview | peer-review | es |