Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-05-10T18:38:37Z
dc.date.available 2024-05-10T18:38:37Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/165927
dc.description.abstract To become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan. en
dc.format.extent 37-50 es
dc.language en es
dc.subject Safe-RL es
dc.subject State of Charge es
dc.subject Battery aging es
dc.subject Variability es
dc.title Electric vehicle battery charging with safe-RL en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/622 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Trimboli, Maximiliano es
sedici.creator.person Avila, Luis es
sedici.creator.person Antonelli, Nicolás es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Simposio Argentino de Inteligencia Artificial (ASAI 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)