Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-05-28T13:43:46Z
dc.date.available 2024-05-28T13:43:46Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/166466
dc.description.abstract El avance de la tecnología y los procesos de secuenciación de genomas de las últimas décadas ha logrado poner al alcance de investigadores de todo el mundo grandes volúmenes de datos biológicos, que debido a su gran escala, los mismos resultan difíciles de analizar en su totalidad, por lo cual es intuitivo pensar en Inteligencia Artificial para trabajar con dicha información. Con el objetivo de disminuir la brecha existente entre el investigador y las herramientas de Inteligencia Artificial, se desarrolló un software que permite crear un espacio de trabajo para un organismo biológico, realizar el procesamiento de los genomas correspondientes y permitir la creación y entrenamiento de modelos de Machine Learning desde una interfaz gráfica. Los modelos entrenados luego se analizan para buscar qué patrones determinan el resultado de la propiedad biológica a investigar sobre el organismo biológico en cuestión, y así encontrar los genes de mayor impacto en las predicciones del modelo, permitiendo al investigador el posterior análisis en laboratorio de un gen deseado. es
dc.description.abstract The advance in technology and genome sequencing processes in the recent decades have made large volumes of biological data available to researchers from all over the world, which, due to the large scales, are difficult to analyze in their entirety. Therefore, it is intuitive to think of Artificial Intelligence to work with such information. In order to reduce the existing gap between the researchers and the Artificial Intelligence tools, a software was developed that allows the creation of a workspace for biological organisms, the processing of its corresponding genomes, and the creation and training of models of Machine Learning, everything using a simple (yet powerful) graphical interface. The trained models are then analyzed to find which patterns determine the result of the property that is being investigated on the biological organism, finding in the process the genes with the greatest impact on the model’s predictions, allowing the researcher to subsequently analyze the desired genes in the laboratory, saving time and resources in the process. en
dc.format.extent 218-234 es
dc.language es es
dc.subject Inteligencia Artificial es
dc.subject Genética es
dc.subject Big Data es
dc.subject ADN es
dc.title Identificación de propiedades biológicas en organismos utilizando técnicas de machine learning sobre secuencias de genoma completo es
dc.title.alternative Identification of biological properties in organisms using machine learning techniques on whole genome sequences en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/634 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Ferella, Nicolás es
sedici.creator.person Pizio, Pablo Román es
sedici.creator.person Pons, Claudia Fabiana es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Concurso de Trabajos Estudiantiles (EST 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)