Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-05-28T15:00:56Z
dc.date.available 2024-05-28T15:00:56Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/166487
dc.description.abstract En este artículo breve se aborda la clasificación de células cervicales en el pap test, también conocido como prueba de Papanicolau, mediante el uso de YOLOv7. El objetivo final del trabajo es lograr una herramienta que asista a los patólogos en el diagnóstico del cáncer de cuello uterino, mejorando la calidad y los tiempos de diagnóstico. Se realizaron tres experimentos para la obtención de resultados preliminares, utilizando distintos números de clases de entre las seis existentes según el sistema Bethesda (Negativo para lesiones intraepiteliales, ASC-US, ASC-H, LSIL, HSIL, SCC). Se empleó el dataset CRIC para entrenar el modelo, y se desarrollaron una API REST en Flask y una aplicación web para utilizar los modelos entrenados en la inferencia. Los resultados preliminares indican que, con las seis clases, el modelo no logra clasificar con la suficiente exactitud, pero se mejora significativamente al agrupar las cinco clases positivas. Se concluye que las células cervicales son fácilmente detectables con YOLOv7, y que se podrían obtener mejores resultados de clasificación, ya sea mejorando el modelo de detección de objetos, el dataset, o introduciendo un clasificador convolucional como segundo paso. es
dc.description.abstract This short article addresses the classification of cervical cells in the Pap test, also known as the Papanicolaou test, using YOLOv7. The ultimate goal of the work is to achieve a tool that assists pathologists in the diagnosis of cervical cancer, improving quality and diagnostic times. Three experiments were performed to obtain preliminary results, using different class numbers from among the six existing classes according to the Bethesda system (Negative for intraepithelial lesions, ASC-US, ASC-H, LSIL, HSIL, SCC). The CRIC dataset was used to train the model, and a REST API in Flask and a web application were developed to use the trained models for inference. Preliminary results indicate that, with the six classes, the model fails to classify accurately enough, but is significantly improved by clustering the five positive classes. It is concluded that cervical cells are easily detectable with YOLOv7, and that better classification results could be obtained either by improving the object detection model, the dataset, or by introducing a convolutional classifier as a second step. en
dc.format.extent 143-148 es
dc.language es es
dc.subject pap test es
dc.subject cervical cancer es
dc.subject deep learning es
dc.subject digital pathology es
dc.title Clasificación de células en prueba de papanicolaou (pap test) en microscopía es
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/615 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Gramática, Martín Nicolás es
sedici.creator.person García, Mario Alejandro es
sedici.creator.person Gignone, Miguel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-09
sedici.relation.event Congreso Argentino de Informática y Salud (CAIS 2023) - JAIIO 52 (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)