Busque entre los 169318 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2024-06-14T16:09:06Z | |
dc.date.available | 2024-06-14T16:09:06Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/167279 | |
dc.description.abstract | Electrochemical modification of the Ti surface to obtain TiO₂ nanotubes (NT-Ti) has been proposed to enhance osseointegration in medical applications. However, susceptibility to microbial adhesion, linked to biomaterial-associated infections, and the high TiO₂ band gap energy, which allows light absorption almost exclusively in the ultraviolet (UV) region, limit its applications. Modifying the TiO₂ semiconductor with metals such as Ag has been suggested both for antimicrobial purposes and for absorbing light in the visible region. The formation of NT-Ti with Ag micropatches (Ag-NT-Ti) is pursued with the objective of enhancing the stability of the deposits and preventing cytotoxic levels of Ag cellular uptake. The innovative process proposed here involves immersing NT-Ti in a AgNO₃ solution as the initial step. Diverging from previously reported electrochemical methods, this process incorporates anodization within the TiO₂ oxide formation region instead of cathodic reduction generally employed by other researchers. The final step encompasses an annealing treatment. The treatments result in the in situ Ag¹⁺ reduction and formation of stable and active micropatches of metallic Ag on the NT-Ti surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman, diffuse reflectance spectroscopy (DRS), wettability assessment, and electrochemical characterizations were conducted to evaluate the modified surfaces. The well-known properties of NT-Ti surfaces were enhanced, leading to improved photocatalytic activity across both visible and UV regions, significant stability against detachment, and controlled release of Ag¹⁺ for promising antimicrobial effects. | en |
dc.format.extent | 9644−9654 | es |
dc.language | en | es |
dc.subject | Irradiation | es |
dc.subject | Metal nanoparticles | es |
dc.subject | Nanotubes | es |
dc.subject | Oxides | es |
dc.subject | X-ray photoelectron spectroscopy | es |
dc.title | Innovative anodic treatment to obtain stable metallic silver micropatches on TiO₂ nanotubes: structural, electrochemical, and photochemical properties | en |
dc.type | Articulo | es |
sedici.identifier.other | https://doi.org/10.1021/acsomega.3c09687 | es |
sedici.identifier.issn | 2470-1343 | es |
sedici.creator.person | Cajiao Checchin, Valentina Chiara | es |
sedici.creator.person | Cacciari, Rodolfo | es |
sedici.creator.person | Rubert, Aldo Alberto | es |
sedici.creator.person | Lieblich, Marcela | es |
sedici.creator.person | Caregnato, Paula | es |
sedici.creator.person | Fagali, Natalia | es |
sedici.creator.person | Fernández Lorenzo de Mele, Mónica Alicia | es |
sedici.subject.materias | Química | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | ACS Omega | es |
sedici.relation.journalVolumeAndIssue | vol. 9, no. 8 | es |