Busque entre los 171491 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2024-08-21T16:48:23Z | |
dc.date.available | 2024-08-21T16:48:23Z | |
dc.date.issued | 1987 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/168837 | |
dc.description.abstract | This paper deals with the maximum asymptotic bias of tiro classes of robust estimates of the dispersion matrix V of a p-dimensional random vector z, under a contamination model of the form P = (1—ε)Po+δ(x0), where P is the distribution of z, Po is a spherical distribution, and δ(x0) is a point mass at z0. Estimators VQ,α of the first class minimise the α quantile of x´V-1z among all symmetric positive-definite matrices V for some α ϵ (0,1). The "maximum volume ellipsoid" estimator proposed by Rouseauw belongs to this class with α = 0.5. These estimators have breakdown point min(α, 1 - α) for all p. The second class of estimators constat of the M-estimaton, from which the seemingly most robust member was choses; namely the Tyler estimate defined as the solution VT of Ez´VT-1z/z´z = VT. This estimator has breakdown point 1/p. The numerical results show that except for ε very close to 1/p, VT has in general a smaller máximum bias than VQ,α; and that the maximum bias of the latter may be extremely large even for a much smaller than its breakdown point. | en |
dc.language | en | es |
dc.subject | Robust covariance | es |
dc.subject | maximum bias | es |
dc.subject | M-estimators | es |
dc.subject | high breakdown point estimators | es |
dc.title | The Maximum Bias of Robust Covariances | en |
dc.type | Publicacion seriada | es |
sedici.title.subtitle | Notas de Matemática, 46 | es |
sedici.creator.person | Maronna, Ricardo Antonio | es |
sedici.creator.person | Yohai, Víctor Jaime | es |
sedici.description.note | Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Publicacion seriada | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.relation.journalTitle | Notas de Matemática | es |
sedici.relation.journalVolumeAndIssue | no. 46 | es |