Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-08-21T16:48:23Z
dc.date.available 2024-08-21T16:48:23Z
dc.date.issued 1987
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/168837
dc.description.abstract This paper deals with the maximum asymptotic bias of tiro classes of robust estimates of the dispersion matrix V of a p-dimensional random vector z, under a contamination model of the form P = (1—ε)Po+δ(x0), where P is the distribution of z, Po is a spherical distribution, and δ(x0) is a point mass at z0. Estimators VQ,α of the first class minimise the α quantile of x´V-1z among all symmetric positive-definite matrices V for some α ϵ (0,1). The "maximum volume ellipsoid" estimator proposed by Rouseauw belongs to this class with α = 0.5. These estimators have breakdown point min(α, 1 - α) for all p. The second class of estimators constat of the M-estimaton, from which the seemingly most robust member was choses; namely the Tyler estimate defined as the solution VT of Ez´VT-1z/z´z = VT. This estimator has breakdown point 1/p. The numerical results show that except for ε very close to 1/p, VT has in general a smaller máximum bias than VQ,α; and that the maximum bias of the latter may be extremely large even for a much smaller than its breakdown point. en
dc.language en es
dc.subject Robust covariance es
dc.subject maximum bias es
dc.subject M-estimators es
dc.subject high breakdown point estimators es
dc.title The Maximum Bias of Robust Covariances en
dc.type Publicacion seriada es
sedici.title.subtitle Notas de Matemática, 46 es
sedici.creator.person Maronna, Ricardo Antonio es
sedici.creator.person Yohai, Víctor Jaime es
sedici.description.note Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Publicacion seriada es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.relation.journalTitle Notas de Matemática es
sedici.relation.journalVolumeAndIssue no. 46 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)