Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-02-07T16:46:06Z
dc.date.available 2025-02-07T16:46:06Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/176277
dc.description.abstract La adopción de la tecnología de contenedores está creciendo rápidamente. Los desarrolladores de software encuentran en los contenedores una herramienta que les permite enfocarse en la aplicación en lugar de adaptar diferentes entornos de servidores. Estos son compactos, se ejecutan rápidamente, operan en cualquier entorno, pueden dividirse en módulos pequeños y son autosuficientes. En sistemas a gran escala, gestionar manualmente aplicaciones con cientos o miles de contenedores es complejo, por lo que la orquestación de contenedores es esencial. Actualmente, Kubernetes es el orquestador open source más utilizado, manejando instancias de microservicios (pequeños servicios independientes que se comunican a través de API) y alojándolos en plataformas adecuadas (Pods). Sin embargo, el rendimiento de los microservicios en un clúster de Kubernetes puede degradarse de manera impredecible, generalmente manifestándose en mayores tiempos de respuesta, un indicador clave de confiabilidad. Este artículo presenta la línea de investigación y las tareas que se están desarrollando en el marco de una tesis correspondiente a la carrera de Maestría en Ciencia de Datos de la Universidad Austral (CABA, Bs.As.) cuyo objetivo es predecir la latencia de respuesta de extremo a extremo en una arquitectura de cloud-native (microservicios) sobre un caso de estudio concreto. Actualmente se está trabajando en el desarrollo de un modelo que sea capaz de predecir la latencia futura de un microservicio usando múltiples variables, estudiando especialmente los modelos basados en Transformers que, si bien han demostrado ser útiles para anticipar comportamientos inestables o para la comprensión de texto, aún no se han utilizado para predecir latencias. Se buscará comparar estas arquitecturas con métodos clásicos ampliamente utilizados para esta predicción, utilizando una implementación de referencia de microservicios para el benchmarking de aplicaciones. es
dc.format.extent 114-124 es
dc.language es es
dc.title Predicción de Latencia en Microservicios con Modelos de Deep Learning es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2428-5 es
sedici.creator.person Lanza, Ezequiel es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.creator.person Estrebou, César Armando es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-10
sedici.relation.event XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/172755 es
sedici.relation.bookTitle Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)