Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-02-07T17:09:47Z
dc.date.available 2025-02-07T17:09:47Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/176284
dc.description.abstract Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. en
dc.format.extent 145-154 es
dc.language en es
dc.subject Handshape Recognition es
dc.subject Unbalanced Data es
dc.subject Limited Data es
dc.subject Sign Language es
dc.subject Human Motion Prediction es
dc.title Scaling up ConvAtt for Sign Language Recognition en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2428-5 es
sedici.creator.person Ríos, Gastón Gustavo es
sedici.creator.person Dal Bianco, Pedro Alejandro es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.creator.person Ponte Ahón, Santiago Andrés es
sedici.creator.person Stanchi, Oscar Agustín es
sedici.creator.person Hasperué, Waldo es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-10
sedici.relation.event XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/172755 es
sedici.relation.bookTitle Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)