Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-02-07T17:25:08Z
dc.date.available 2025-02-07T17:25:08Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/176288
dc.description.abstract The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. en
dc.format.extent 125-134 es
dc.language en es
dc.subject Ablation es
dc.subject Black Box es
dc.subject Computer Vision es
dc.subject Deep Learning es
dc.subject Interpretability es
dc.subject Quantitative Measure es
dc.subject White Box es
dc.title Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2428-5 es
sedici.creator.person Stanchi, Oscar Agustín es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Dal Bianco, Pedro Alejandro es
sedici.creator.person Ríos, Gastón Gustavo es
sedici.creator.person Hasperué, Waldo es
sedici.creator.person Puig Valls, Domenec es
sedici.creator.person Rashwan, Hatem es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-10
sedici.relation.event XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/172755 es
sedici.relation.bookTitle Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)