Busque entre los 168453 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-08-08T14:02:46Z | |
dc.date.available | 2012-08-08T14:02:46Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/19365 | |
dc.description.abstract | Intrusion Detection System (IDS) have been the key in the network manager daily fight against continuous attacks. However, with the Internet growth, network security issues have become more difficult to handle. Jointly, Machine Learning (ML) techniques for traffic classification have been successful in terms of performance classification. Unfortunately, most of these techniques are extremely CPU time consuming, making the whole approach unsuitable for real traffic situations. In this work, a description of a simple software architecture for ML based is presented together with the first steps towards improving algorithms efficience in some of the proposed modules. A set experiments on the 199 DARPA dataset are conducted in order to evaluate two atribute selecting algorithms considering not only classsification perfomance but also the required CPU time. Preliminary results show that computadtioal effort can be reduced by 50% maintaining similar accuaracy levels, progressing towards a real world implementation of an ML based IDS. | en |
dc.format.extent | 852-861 | es |
dc.language | es | es |
dc.subject | sistema operativo | es |
dc.subject | System architectures | es |
dc.subject | Machine Learning (ML) | en |
dc.subject | Intrusion Detection System (IDS) | en |
dc.title | Towards efficient intrusion detection systems based on machine learning techniques | es |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-950-9474-49-9 | es |
sedici.creator.person | Catania, Carlos | es |
sedici.creator.person | Vallés, Mariano | es |
sedici.creator.person | García Garino, Carlos | es |
sedici.description.note | Presentado en el V Workshop Arquitectura, Redes y Sistemas Operativos (WARSO) | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2010-10 | |
sedici.relation.event | XVI Congreso Argentino de Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |