Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-08-23T11:54:29Z
dc.date.available 2012-08-23T11:54:29Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/20045
dc.description.abstract En la actualidad, debido a la evolución de las tecnologías de información y comunicación, tenemos la posibilidad de almacenar distintos tipos de información. Podemos encontrar, por ejemplo en la Web, docenas de billones de documentos y cientos de millones de imágenes y otros tipos de datos tales como fotografías, audio y video. Esta nueva colección de datos no estructurados admite como modelo a las bases de datos métricas. Ante la gran cantidad de información, para poder recuperar estos datos en forma rápida y eficiente han surgido distintas alternativas de optimización. Una de ellas son estructuras de indexación y algoritmos de búsquedas y otra es la optimización a través de la aplicación de técnicas de computación de alto desempeño. Los sistemas diseñados para resolver problemas específicos como los procesadores gráficos (GPU), han comenzado a ser de gran interés para desarrollar problemas de computación de proposito general ya que proveen un bandwith de memoria extremadamente alto y gran poder computacional necesarios para computación de alta performance y a un bajo costo. La línea de investigación que se propone seguir pretende evaluar la factibilidad de utilizar la GPU como computadora masivamente paralela para obtener soluciones de alto desempeño en base de datos métricas. Entre las operaciones de interés se encuentran las consultas. es
dc.format.extent 305-309 es
dc.language es es
dc.subject base de datos es
dc.subject base de datos métricas es
dc.subject Data mining es
dc.subject modelo CPU-GPU es
dc.subject operaciones es
dc.title Operaciones en base de datos métricas y modelo CPU-GPU es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-673-892-1 es
sedici.creator.person Lopresti, Mariela es
sedici.creator.person Piccoli, María Fabiana es
sedici.creator.person Reyes, Nora Susana es
sedici.description.note Eje: Bases de datos y minería de datos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2011-05 es
sedici.relation.event XIII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)