Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-12T12:25:00Z
dc.date.available 2012-09-12T12:25:00Z
dc.date.issued 2006
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/20823
dc.description.abstract One of the most common patterns of the geographic landscape is the fractal or nearfractal form. Unfortunately, most traditional methods of spatial interpolation assume some type of continuous and regionalizeable variation of the underlying geographic form, an assumption at odds with the observed fractal properties of many landscapes. An extremely simple iterative algorithm, the voter model cellular automata (CA), produces discontinuous fractal patterns useful for interpolation while at the same preserving a realistic amount of spatial autocorrelation, extracted from neighboring existing data, also found in these landscapes. This adaptive algorithm is based on the principle of iteratively interpolating a missing data point using the value of a randomly selected neighbor cell. The model can also be extended to interpolate field-like variables by adding random deviations from the randomly chosen neighbor cell value. In this paper we explore the effect of satellite image restoration using a simple VMCA over obscured by clouds areas. This model is computationally advantageous, given its localty and restricted underlying computational model. Thus, an adequate computer implementation may perform significantly faster than other restoration methods, with roughly similar overall results. Also the local/scalable/parallelizable nature of CAs allows hardware FPGA implementation that might be embedded within the imager devices in satellites and remote sensors. On the other end, a GPU implementation might take advantage of highly specialized parallel processors capablde of restoring huge images in real time. en
dc.language en es
dc.subject Satellite Image Restoration es
dc.subject Visual es
dc.subject VMCA Model es
dc.subject Graphics es
dc.subject Real time es
dc.title Satellite Image Restoration using the VMCA Model en
dc.type Objeto de conferencia es
sedici.identifier.isbn 950-9474-35-5
sedici.creator.person Anderson, Sharolyn es
sedici.creator.person Fonstad, Mark Alan es
sedici.creator.person Delrieux, Claudio es
sedici.description.note Eje: Computación gráfica, visualización e imágenes es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2006-06 es
sedici.relation.event VIII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)