Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-12T16:54:39Z
dc.date.available 2012-09-12T16:54:39Z
dc.date.issued 2009
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/20884
dc.description.abstract Feature selection is a well-known pre-processing technique, commonly used with high-dimensional datasets. Its main goal is to discard useless or redundant variables, reducing the dimensionality of the input space, in order to increase the performance and interpretability of models. In this work we introduce the ANN-RFE, a new technique for feature selection that combines the accurate and time-e cient RFE method with the strong discrimination capabilities of ANN ensembles. In particular, we discuss two feature importance metrics that can be used with ANN-RFE: the shu ing and dE metrics. We evaluate the new method using an arti cial example and ve real-world wide datasets, including gene-expression data. Our results suggest that both metrics have equivalent capabilities for the selection of informative variables. ANNRFE seems to produce overall results that are equivalent to previous e cient methods, but can be more accurate on particular datasets. en
dc.format.extent 60-69 es
dc.language en es
dc.subject Process metrics es
dc.subject feature selection en
dc.title Feature selection with simple ANN ensembles en
dc.type Objeto de conferencia es
sedici.creator.person Izetta Riera, C. Javier es
sedici.creator.person Granitto, Pablo Miguel es
sedici.description.note Presentado en el X Workshop Agentes y Sistemas Inteligentes es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2009-10
sedici.relation.event XV Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)