Busque entre los 165885 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-09-18T13:16:26Z | |
dc.date.available | 2012-09-18T13:16:26Z | |
dc.date.issued | 2005 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/21087 | |
dc.description.abstract | Proximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches. | en |
dc.format.extent | 339-343 | es |
dc.language | en | es |
dc.subject | Unbalanced Approach | es |
dc.subject | Algorithms | es |
dc.subject | Metric Space Searching | es |
dc.subject | Metrics | es |
dc.title | An unbalanced approach to metric space searching | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 950-665-337-2 | |
sedici.creator.person | Chávez, Edgar | es |
sedici.creator.person | Ludueña, Verónica | es |
sedici.creator.person | Reyes, Nora Susana | es |
sedici.description.note | Eje: Algoritmos | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2005-05 | es |
sedici.relation.event | VII Workshop de Investigadores en Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |