Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-18T13:16:26Z
dc.date.available 2012-09-18T13:16:26Z
dc.date.issued 2005
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21087
dc.description.abstract Proximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches. en
dc.format.extent 339-343 es
dc.language en es
dc.subject Unbalanced Approach es
dc.subject Algorithms es
dc.subject Metric Space Searching es
dc.subject Metrics es
dc.title An unbalanced approach to metric space searching en
dc.type Objeto de conferencia es
sedici.identifier.isbn 950-665-337-2
sedici.creator.person Chávez, Edgar es
sedici.creator.person Ludueña, Verónica es
sedici.creator.person Reyes, Nora Susana es
sedici.description.note Eje: Algoritmos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2005-05 es
sedici.relation.event VII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)