Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-18T13:20:31Z
dc.date.available 2012-09-18T13:20:31Z
dc.date.issued 2005
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21088
dc.description.abstract El modelo de espacios métricos permite abstraer muchos de los problemas de búsqueda por proximidad. La búsqueda por proximidad tiene múltiples aplicaciones especialmente en el área de bases de datos multimedia. La idea es construir un índice para la base de datos de manera tal de acelerar las consultas por proximidad o similitud. Aunque existen varios índices prometedores, pocos de ellos son dinámicos, es decir, una vez creados muy pocos permiten realizar inserciones y eliminaciones de elementos a un costo razonable. El ´Arbol de Aproximación Espacial (dsa–tree) es un índice recientemente propuesto, que ha demostrado tener buen desempeño en las búsquedas y que además es totalmente dinámico. En este trabajo nos proponemos obtener una nueva estructura de datos para búsqueda en espacios métricos, basada en el dsa–tree, que mantenga sus virtudes y que aproveche que en muchos espacios existen clusters de elementos y que además pueda hacer un mejor uso de la memoria disponible para mejorar las búsquedas. es
dc.format.extent 406-410 es
dc.language es es
dc.subject Algorithms es
dc.subject Combinando Clustering es
dc.subject Aproximación Espacial es
dc.subject Metrics es
dc.subject B´usquedas en Espacios Métricos es
dc.title Combinando clustering con aproximación espacial para búsquedas en espacios métricos es
dc.type Objeto de conferencia es
sedici.identifier.isbn 950-665-337-2
sedici.creator.person Navarro, Gonzalo es
sedici.creator.person Reyes, Nora Susana es
sedici.creator.person Barroso, Marcelo es
sedici.description.note Eje: Algoritmos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2005-05 es
sedici.relation.event VII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)