Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-19T12:13:41Z
dc.date.available 2012-09-19T12:13:41Z
dc.date.issued 2005
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21157
dc.description.abstract From the many different patterns that can be extracted from data, so-called emerging patterns (EPs) are a particular useful kind. EPs are itemsets whose supports increase significantly from one dataset to another. Existing methods used to discover EPs have been successfully applied only under a constrained search space. Although they may provide a very efficient way of discovering some sort of EPs, they are rather limited when the whole set of EPs is needed, as they just compute an approximation of that set. Recent EPs techniques rely on borders, a concise representation of the candidate itemsets which does not require computing an exponentially large number of such candidates. In this paper we outline a new method which exploits previously mined data using an incremental approach, requiring thus less dataset accesses. Our proposal also aims to reduce the amount of work needed to perform difference operations among borders taking into account special properties of the itemsets. en
dc.format.extent 263-267 es
dc.language en es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.subject pattern mining en
dc.subject emerging patterns en
dc.subject maximal patterns en
dc.subject incremental mining en
dc.title Enhanced approximation of the emerging pattern space using an incremental approach en
dc.type Objeto de conferencia es
sedici.identifier.isbn 950-665-337-2
sedici.creator.person Grandinetti, Walter M. es
sedici.creator.person Chesñevar, Carlos Iván es
sedici.creator.person Falappa, Marcelo Alejandro es
sedici.description.note Eje: Inteligencia artificial es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2005-05 es
sedici.relation.event VII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)