Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-19T15:23:03Z
dc.date.available 2012-09-19T15:23:03Z
dc.date.issued 2005
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21196
dc.description.abstract Este artículo describe los trabajos de investigación y desarrollo que se están llevando a cabo en el Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), relacionados a la aplicación de técnicas bio-insipiradas a problemas de minería de datos, y en particular, a tareas de clustering. Intuitivamente, una tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, describimos brevemente algunos de los trabajos que se están llevando a cabo en el LIDIC referidos a la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, a la tarea de clustering. Entre estos algoritmos podemos mencionar a AntTree, con el cual se ha experimentado utilizando distintas instancias del problema de clustering, reportándose algunas de las ventajas y desventajas observadas en este algoritmo en el trabajo experimental. También se proponen extensiones a este algoritmo que permitirían flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar. es
dc.format.extent 368-372 es
dc.language es es
dc.subject Clustering es
dc.subject técnicas bio-inspiradas es
dc.title Clustering a través de técnicas bio-inspiradas es
dc.type Objeto de conferencia es
sedici.identifier.isbn 950-665-337-2
sedici.creator.person Ingaramo, Diego Alejandro es
sedici.creator.person Leguizamón, Guillermo es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.description.note Eje: Otros es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2005-05 es
sedici.relation.event VII Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)