Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-09-19T17:45:44Z
dc.date.available 2012-09-19T17:45:44Z
dc.date.issued 2009
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21207
dc.description.abstract Cientistas das diversas áreas de conhecimento humano têm se deparado com a necessidade de resolver problemas que envolvem a compreensão de dados de alta dimensionalidade. Assim, a utilização de técnicas de aprendizado de máquina tem sido dificultada por limitações na quantidade de exemplos aliada ao excesso de variáveis aleatórias descrevendo os dados. Este trabalho apresenta uma nova abordagem para redução de dimensionalidade dos dados a fim de melhorar a escalabilidade dos algoritmos de aprendizado baseados em redes neurais. São apresentados experimentos que demonstram a eficiência da abordagem proposta na criação de modelos neurais mais simples e mais precisos dos dados. pt
dc.format.extent 1051-1060 es
dc.language pt es
dc.subject Learning es
dc.subject Neural nets es
dc.title Uma nova métrica para redução de dimensionalidade em modelos de aprendizado neural pt
dc.type Objeto de conferencia es
sedici.creator.person Silva Camargo, Sandro da es
sedici.creator.person Engel, Paulo Martins es
sedici.description.note VI Workshop Bases de Datos y Minería de Datos (WBD) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2009-10
sedici.relation.event XV Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)