Busque entre los 169128 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-09-26T12:44:01Z | |
dc.date.available | 2012-09-26T12:44:01Z | |
dc.date.issued | 2003 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/21512 | |
dc.description.abstract | The estimation of the instant location and strength of sources takes a considerable importance for many areas of sensor space-array processing, e.g., brain activity in non-invasive electro-medicine. State-space models are a well suited framework for solving that dynamic estimation problem and they are in the core of our studies. Related to brain electrical activity, the state estimation problem can be solved by analyzing spatio-temporal data provided by EEG/MEG measures. Nonlinear Kalman-like filter is proposed for estimating locustemporal data related to electrical activity in the brain. The experimental framework is described. | en |
dc.format.extent | 71-75 | es |
dc.language | en | es |
dc.subject | EEG/MEG | en |
dc.subject | Signal processing | es |
dc.subject | source estimation | en |
dc.title | EEG/MEG Kalman-like source estimation | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Bria, Oscar N. | es |
sedici.description.note | Eje: Procesamiento de Señales | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2003-05 | es |
sedici.relation.event | V Workshop de Investigadores en Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |