Busque entre los 168361 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-10-01T11:21:02Z | |
dc.date.available | 2012-10-01T11:21:02Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/21794 | |
dc.description.abstract | Presentamos un método eficiente y robusto para computar la dimensión fractal local (DFL) de autocorrelación o coeficiente H de Hurst en imágenes 3D. El mismo es una variante al modelo que se utiliza para medir la DFL en señales e imágenes digitales. En el caso de imágenes tridimensionales, la auto correlación local evalúa, dentro de una ventana volumétrica, la máxima variación de los valores presentes en los voxels en función de su distancia Euclídea al centro de la ventana, siendo el H local la pendiente de la regresión en el espacio log—log de dicha máxima variación en función de la distancia. En trabajos anteriores se mostró que la evaluación de H en imágenes es mucho más precisa y estable si se utiliza la máxima variación entre todos los pixels que están a una distancia dada, y que la utilización de ventanas circulares reduce además el tiempo de computo mejorando la calidad. En este trabajo proponemos generalizar estas ideas a 3D, computando la DFL en volúmenes utilizando autocorrelación cúbica. Los resultados obtenidos, tanto en volúmenes sintéticos de datos como con imágenes medicas 3D, son significativamente mejores que con el método clásico, demostrando que la DFL es una alternativa importante para la segmentación en imágenes tridimensionales. | es |
dc.language | es | es |
dc.subject | segmentación en imágenes 3d | es |
dc.subject | Imagen Tridimensional | es |
dc.subject | dimensión fractal de autocorrelación | es |
dc.subject | coeficiente de Hurst | es |
dc.title | Segmentación en imágenes 3D utilizando dimensión fractal de autocorrelación local | es |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Silvetti, Andrea | es |
sedici.creator.person | Delrieux, Claudio | es |
sedici.description.note | Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV) | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2008-10 | |
sedici.relation.event | XIV Congreso Argentino de Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |