Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-12T11:48:00Z
dc.date.available 2012-10-12T11:48:00Z
dc.date.issued 2004
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/22324
dc.description.abstract Clustering consiste en particionar el conjunto de datos en colecciones de objetos de manera que dentro de cada partición los objetos sean “similares” entre sí, y a su vez se “diferencien” de los objetos contenidos en otras particiones. En la literatura han sido propuestos muchos algoritmos para realizar el proceso de clustering, pero la mayoría de ellos tiene un enfoque estático, por lo tanto, estas soluciones no pueden ser aplicadas correctamente para datos más complejos, como colecciones de objetos espacio-temporales. En muchos casos, la información guardada en las bases de datos tiene una naturaleza espacial dinámica: además de tener datos espaciales, a menudo se asocian los mismos con información temporal, como marcas de tiempo (time-stamp) ,manejo de versiones, fechas o rango de fechas. En el presente trabajo se propone un método de Clustering Temporal que realiza el proceso de clustering sólo teniendo en cuenta los atributos espaciales, pero para distintos momentos de tiempo (dato aportado por los atributos temporales). Esto nos permite ver cómo varían los clusters durante el transcurso del tiempo, observar la trayectoria de los objetos, y obtener distintas estadísticas sobre el movimiento de clusters y objetos, que no se podrían obtener aplicando un algoritmo de clustering estándar. en
dc.language es es
dc.subject clustering temporal en
dc.subject base de datos es
dc.subject SOFTWARE ENGINEERING es
dc.subject Data mining es
dc.subject k-d-Median en
dc.subject Clustering es
dc.title Un modelo de clustering temporal es
dc.type Objeto de conferencia es
sedici.creator.person Ale, Juan María es
sedici.creator.person Navas, María Daniela es
sedici.description.note Eje: I - Workshop de Ingeniería de Software y Base de Datos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.relation.event X Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)