Busque entre los 168757 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-10-22T12:26:31Z | |
dc.date.available | 2012-10-22T12:26:31Z | |
dc.date.issued | 2003-10 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/22714 | |
dc.description.abstract | Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples. | en |
dc.format.extent | 601-612 | es |
dc.language | en | es |
dc.subject | Intelligent agents | es |
dc.subject | Machine Learning | en |
dc.subject | ARTIFICIAL INTELLIGENCE | es |
dc.subject | Defeasible Argumentation | en |
dc.subject | Neural networks | en |
dc.subject | Neural nets | es |
dc.subject | Fuzzy Adaptive Resonance Theory | en |
dc.subject | Clustering | es |
dc.title | Combining argumentation and clustering techniques in pattern classification problems | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Gómez, Sergio Alejandro | es |
sedici.creator.person | Chesñevar, Carlos Iván | es |
sedici.description.note | Eje: Agentes y Sistemas Inteligentes (ASI) | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2003-10 | |
sedici.relation.event | IX Congreso Argentino de Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |