Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-22T13:37:57Z
dc.date.available 2012-10-22T13:37:57Z
dc.date.issued 2003-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/22728
dc.description.abstract In dynamic scheduling arrival times as well, as some or all job attributes are unknown in advance. Dynamism can be classified as partial or total. In simplest partially dynamic problems the only unknown attribute of a job is its arrival time rj. A job arrival can be given at any instant in the time interval between zero and a limit established by its processing time, in order to ensure finishing it before the due date deadline. In the cases where the arrivals are near to zero the problem becomes closer to the static problem, otherwise the problem becomes more restrictive. In totally dynamics problems, other job attributes such as processing time pj, due date dj, and tardiness penalty wj, are also unknown. This paper proposes different approaches for resolution of (partial and total) Dynamic Average Tardiness problems in a single machine environment. The first approach uses, as a list of dispatching priorities a final (total) schedule, found as the best by another method for a similar static problem: same job features, processing time, and due dates. The second approach uses as a dispatching priority the order imposed by a partial schedule created by another heuristic, at each decision point. The details of implementation of the proposed algorithms and results for a group of selected instances are discussed in this work. es
dc.format.extent 729-739 es
dc.language es es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.subject Evolutionary Scheduling es
dc.subject Average Tardiness es
dc.subject Intelligent agents es
dc.subject Scheduling es
dc.subject Dynamic scheduling es
dc.subject conventional heuristics es
dc.title Solutions to the dynamic average tardiness problem in single machine environments en
dc.type Objeto de conferencia es
sedici.creator.person San Pedro, María Eugenia de es
sedici.creator.person Lasso, Marta Graciela es
sedici.creator.person Villagra, Andrea es
sedici.creator.person Pandolfi, Daniel es
sedici.creator.person Gallard, Raúl Hector es
sedici.description.note Eje: Agentes y Sistemas Inteligentes (ASI) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2003-10
sedici.relation.event IX Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)