Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-23T14:38:41Z
dc.date.available 2012-10-23T14:38:41Z
dc.date.issued 2006-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/22802
dc.description.abstract The interaction between software systems by means of mobile code is a powerful and truly effective method, particularly useful for installing and executing code dynamically. However, for this mechanism to be applicable safely, especially in industrial or critical applications, techniques that guarantee foreign code execution safety for the consumer or host will be necessary. Of course, tool support for automating, at least partially, the application of these techniques is essential. The importance of guarantee code execution safety originates numerous active research lines, among which Proof-Carrying Code (PCC) is one of the most successful. One of the problems to overcome for the PCC industrial use is to obtain lineal methods of safeness certification and verification. A framework for the generation and execution of safe mobile code based on PCC together with techniques for static analysis of control and data-flow, called PCC-SA, was developed later by the authors. The results of the group that allowed proving the hypothesis that the PCC-SA complexity in practice is lineal respect to the input programs length, as for certification as for verification processes are also presented. To achieve this, a C-program family, whose elements are referred to as lineally annotative, is defined. Parameters statically measured over their source code determine whether a program belongs to this family or not. Different properties of this family are demonstrated in this work, which allows formally showing that for all the programs of this family, the PCC-SA presents a lineal behavior. The parameters required for a large sample of programs keeping of standard packages, are calculated. This calculation finally determines that all the programs of the sample are lineally annotative, which validates the hypothesis previously stated. en
dc.format.extent 1813-1824 es
dc.language en es
dc.subject Program verification es
dc.subject mobile code en
dc.subject certifying compilation en
dc.subject static analysis en
dc.subject proof-carrying code en
dc.title Secure mobile code and control flow analysis en
dc.type Objeto de conferencia es
sedici.creator.person Bavera, Francisco es
sedici.creator.person Aguirre, Jorge es
sedici.creator.person Nordio, Martín es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2006-10
sedici.relation.event XII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)