Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-29T14:14:24Z
dc.date.available 2012-10-29T14:14:24Z
dc.date.issued 2002-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23134
dc.description.abstract In a production system it is usual to stress minimum tardiness to achieve higher client satisfaction. According to the client relevance, job processing costs and requirements, and various other considerations, a weight is assigned to each job. An important, non-trivial, problem is to minimize weighted tardiness. Evolutionary algorithms (EAs) have been proved as efficient tools to solve scheduling problems. Latest improvements in EAs have been developed by means of multirecombination, a method which allows multiple exchange of genetic material between individuals of the mating pool. As EAs are blind search methods this paper proposes to insert problem-specific-knowledge by recombining potential solutions (individuals of the evolving population) with seeds, which are solutions provided by other heuristics specifically intended to solve the scheduling problem under study. In this work we describe two main approaches where seeds are inserted either in the initial population or as a part of every mating pool during evolution. Both methods were contrasted for a set of problem instances extracted from the OR-Library. An outline of the weighted tardiness problem in a single machine environment, details of implementation and results are discussed. es
dc.format.extent 343-353 es
dc.language es es
dc.subject Evolutionary Algorithms es
dc.subject Algorithms es
dc.subject Solve W-T Scheduling Problems es
dc.subject Scheduling es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.title Adding problem-specific knowledge in evolutionary algorithms to solve W-T scheduling problems en
dc.type Objeto de conferencia es
sedici.creator.person San Pedro, María Eugenia de es
sedici.creator.person Pandolfi, Daniel es
sedici.creator.person Villagra, Andrea es
sedici.creator.person Lasso, Marta Graciela es
sedici.creator.person Vilanova, Gabriela es
sedici.creator.person Gallard, Raúl Hector es
sedici.description.note Eje: Sistemas inteligentes es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2002-10
sedici.relation.event VIII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)