Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-31T19:35:05Z
dc.date.available 2012-10-31T19:35:05Z
dc.date.issued 2007
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23371
dc.description.abstract Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente. es
dc.description.abstract The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated. en
dc.format.extent 1763-1773 es
dc.language es es
dc.subject c-means en
dc.subject Biology and genetics es
dc.subject Medicine and science es
dc.subject genetic algorithms en
dc.subject particle swarm optimization en
dc.subject Algorithms es
dc.subject optimización mediante cúmulos de partículas (PSO) es
dc.subject algoritmos genéticos es
dc.title Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas es
dc.type Objeto de conferencia es
sedici.creator.person Villagra, Andrea es
sedici.creator.person Pandolfi, Daniel es
sedici.subject.materias Ciencias Informáticas es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2007-10
sedici.relation.event XIII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)