Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-01T12:05:02Z
dc.date.available 2012-11-01T12:05:02Z
dc.date.issued 2001-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23398
dc.description.abstract Ensembles of artificial neural networks (ANN) have been used in the last years as classification/regression machines, showing improved generalization capabilities that outperform those of single networks. However, it has been recognized that for aggregation to be effective the individual networks must be as accurate and diverse as possible. An important problem is, then, how to tune the aggregate members in order to have an optimal compromise between these two conflicting conditions. Recently, we proposed a new method for constructing ANN ensembles —termed here Stepwise Ensemble Construction Algorithm (SECA)— which leads to overtrained aggregate members with an adequate balance between accuracy and diversity. We present here a more extensive evaluation of SECA and discuss a potential problem with this algorithm: the unfrequent but damaging selection through its heuristic of particularly bad ensemble members. We introduce a modified version of SECA that can cope with this problem by allowing individual weighing of aggregate members. The original algorithm and its weighed modification are favorably tested against other methods, producing an improvement in performance on the standard statistical databases used as benchmarks. en
dc.language en es
dc.subject Neural nets es
dc.subject machine learning en
dc.subject ensemble methods en
dc.subject Algorithms es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.title SECA: a stepwise algorithm for construction of neural networks ensembles en
dc.type Objeto de conferencia es
sedici.creator.person Granitto, Pablo Miguel es
sedici.creator.person Verdes, Pablo Fabián es
sedici.creator.person Ceccatto, Hermenegildo Alejandro es
sedici.creator.person Navone, Hugo Daniel es
sedici.description.note Eje: Sistemas inteligentes es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2001-10
sedici.relation.event VII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)