Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2012-11-01T13:14:11Z
dc.date.available 2012-11-01T13:14:11Z
dc.date.issued 2001-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23416
dc.description.abstract Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task. en
dc.language en es
dc.subject ensemble methods en
dc.subject Neural nets es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.subject kernel methods en
dc.subject petroleum industry en
dc.title Modeling sonic logs in oil wells: a comparison of neural networks ensembles and kernel methods en
dc.type Objeto de conferencia es
sedici.creator.person Granitto, Pablo Miguel es
sedici.creator.person Navone, Hugo Daniel es
sedici.creator.person Verdes, Pablo Fabián es
sedici.creator.person Ceccatto, Hermenegildo Alejandro es
sedici.description.note Eje: Sistemas inteligentes es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2001-10
sedici.relation.event VII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)