Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-01T16:18:28Z
dc.date.available 2012-11-01T16:18:28Z
dc.date.issued 2000-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23455
dc.description.abstract The flow shop scheduling problem (FSSP) has held the attention of many researchers. In a simplest usual situation, a set of jobs must follow the same route to be executed on a set of machines (resources) and the main objective is to optimize some performance variable (makespan, tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of machines is greater than or equal to three, the problem is NP-hard. EC is an emergent research field, which provides new heuristics to problem optimization where traditional approaches make the problem computationally intractable, is continuously showing its own evolution and enhanced approaches included latest multi-recombinative methods involving multiple crossovers per couple (MCPC) and multiple crossovers on multiple parents (MCMP). The present paper discusses the new multi-recombinative methods and shows the improvement of performance of enhanced evolutionary approaches under permutation and decode representation. Results of the methods proposed for each chromosome representation are here contrasted and results are shown. en
dc.language en es
dc.subject Scheduling es
dc.subject evolutíonary algorithms en
dc.subject multiple crossovers en
dc.subject multiple parents en
dc.title Multirecombination and different representation in evolutionary algorithms for the flow shop scheduling problem en
dc.type Objeto de conferencia es
sedici.creator.person Bain, María Elena es
sedici.creator.person Pandolfi, Daniel es
sedici.creator.person Vilanova, Gabriela es
sedici.creator.person Gallard, Raúl Hector es
sedici.description.note I Workshop de Agentes y Sistemas Inteligentes (WASI) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2000-10
sedici.relation.event VI Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)